skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ostendorf, Melinda A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Article“Green” Fabrication of High-performance Transparent Conducting Electrodes by Blade Coating and Photonic Curing on PET for Perovskite Solar CellsJustin C. Bonner 1,†, Robert T. Piper 1,†, Bishal Bhandari 2, Cody R. Allen 2, Cynthia T. Bowers 3,4, Melinda A. Ostendorf 3,4, Matthew Davis 5, Marisol Valdez 6, Mark Lee 2 and Julia W. P. Hsu 1,∗1 Department of Materials Science and Engineering, University of Texas at Dallas, 800 W Campbell Road, RL-10, Richardson, TX 75080, USA2 Department of Physics, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA3 Materials Characterization Facility at the Air Force Research Laboratory, 2941 Hobson Way, WPAFB, OH 45433, USA4 UES, Inc., a BlueHalo Company, 4401 Dayton-Xenia Rd, Dayton, OH 45432, USA5 Energy Materials Corporation, 1999 Lake Ave B82 Ste B304, Rochester, NY 14650, USA6 Department of Chemistry, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA* Correspondence: jwhsu@utdallas.edu† These authors contributed equally to this work.Received: 30 September 2024; Revised: 25 October 2024; Accepted: 30 October 2024; Published: 5 November 2024Abstract: This study presents an innovative material processing approach to fabricate transparent conducting electrodes (TCEs) on polyethylene terephthalate (PET) substrates using blade coating and photonic curing. The hybrid TCEs consist of a multiscale Ag network, combining silver metal bus lines and nanowires, overcoated by an indium zinc oxide layer, and then photonically cured. Blade coating ensures film uniformity and thickness control over large areas. Photonic curing, a non-thermal processing method with significantly lower carbon emissions, enhances the conductivity and transparency of the coated layers. Our hybrid TCEs achieve an average transmittance of (81 ± 0.4)% referenced to air ((90 ± 0.4)% referenced to the PET substrate) in the visible range, an average sheet resistance of (11 ± 0.5) Ω sq−1, and an average surface roughness of (4.3 ± 0.4) nm. We benchmark these values against commercial PET/TCE substrates. Mechanical durability tests demonstrate <3% change in resistance after 2000 bending cycles at a 1 in radius. The scalable potential of the hybrid TCE fabrication method is demonstrated by high uniformity and excellent properties in 7 in × 8 in large-area samples and by performing the photonic curing process at 11 m min−1. Furthermore, halide perovskite solar cells fabricated on these hybrid TCEs achieve average and champion power conversion efficiencies of (10.5 ± 1.0) % and 12.2%, respectively, and significantly outperform devices made on commercial PET/TCEs. This work showcases our approach as a viable pathway for high-speed “green” manufacturing of high-performance TCEs on PET substrates for flexible optoelectronic devices. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026